Counting Sort

Counting sort is a type of Linear Time Sort

  • Counting Sort was invented by H.H.Seward in 1954
  • All the sorting algorithms introduced so far share an                                                interesting property: the sorted order they determine is based only on comparison between the input elements

Assumption of Counting Sort

  • Counting sort assumes that each of the element is an integer and lies in the range 1 to k, for some integer k
  • When k=O(n) then sort runs in O(n) time.
  • Determine how many elements are less than an element x
  • Then place x directly on its correct position
Counting sort
Counting sort working
Counting sort
Counting sort time complexity
Counting sort
Counting sort example

Running Time

  • T(n) = O(k) + O(n) + O(k) + O(n)

= O(k+n+k+n) = O(2k + 2n)

Assumption: k is O(n)

Hence T(n) = O(n)

Thus Counting Sort beats the running time of “nlogn” as it is not a comparison based sort

 

Related links 

Single link list                 Stack              AVL Trees             Binary search          Counting Sort

Doubly link list               Queue              Graphs                  Bubble Sort               Radix sort

Circular link list              Binary search tree       Hashing         Insertion Sort         Bucket Sort

Josephus Problem          Tree Traversal              Heaps                Quick Sort              Merge Sort

 

At Cui tutorial, courses, past papers and final year projects

#tutorial #cui #pastpaper #courses #finalyearproject

 

 

Search within CuiTutorial

Scroll to Top