

COMSATS University Islamabad (Vehari Campus) DEPARTMENT OF Computer Sciences

Second Sessional FA 18

Instructor: Dr. Asfand Fahad

Multivariable Calculus (MTH-105)

Program: BSCS-B16, BSSE-B10

Student Name : AHMER TOBAL

Time: 90 Minutes

Marks: 15

Date: 19-11-2018

Reg. No.SPI8-BSE-

Q.1 (i) Let $F(x,y) = \frac{x}{x+y^2}$. Find the domain of F. Sketch the domain. What does it represent?

(ii) Let $r_1(t)$ and $r_2(t)$ be two vector valued functions. Show that

$$\frac{d}{dt}(r_1(t).r_2(t)) = r_1(t).r_2'(t) + r_1'(t).r_2(t).$$

(iii) Let A(2,-1,0), B(2,1,-1) and C(-1,1,2) be three points in space. Find the area of triangle determined by joining A, B and C. Also find a unit vector perpendicular to the plane containing A, B and C.

(02+03+03)

- Q.2 (i) Let $r(t) = \frac{t-1}{t^2+4t-5}i + \tan(t)j + \ln(1+t)k$.
 - (a) Find the Domain of r.
 - (b) Find the points where r is discontinuous.
 - (c) Also find the continuous extension of r where it is possible.
 - (ii) Let $r(t) = \frac{4}{9}(1+t)^{\frac{3}{2}}i + \frac{4}{9}(1-t)^{\frac{3}{2}}j + \frac{1}{3}tk$ represents position of particle in space. Find the angle between velocity and acceleration of particle when t=0.
 - (iii) Let $r(t) = (3\sin 2t)i + (3\cos 2t)j + \sqrt{13} tk$ be a vector-valued function. Find the length of the curve determined by r(t) from t = 0 to $t = \pi$.

(03+02+02)