

COMSATS University Islamabad, Vehari Department of Computer Science

Course Title:	Data Structure and Algorithm							
Course Instructor:					Course Code:	CSC211	Credit Hours:	4
Semester:	and he diffusion			Programme	BSSE			
Time Allowed:	3	Batch	B10	Section:	-Λ	Date:	24-06-201	9
	3 Hours				Maximum Marks:		50	
	Name: AHMER LOBAL				Reg. No. CITT/SP18-BSE-002 /VIII			

Important Instructions / Guidelines:	Keg. No. CITT/SP18-BSE-002 A							
Read the question paper and the								
Read the question paper carefully and answer the q	uestions according to their statements.							
Mobile phones are not allowed. Calculators must n	ot have any data/equations etc. in their memory.							
Terminal Examinat	•							
Q# 1. Answer the short questions, each question of								
I. Define asymptotic notations	carry equal marks. (10)							
II. Define the term recursive algorithm.								
III. Analyse the time complexity of quick sort.								
IV. Differentiate between merge sort and insertion sort.								
V. Differentiate between binary search and sequential search.								
start and se	quential scaren.							
Q# 2. What is priority queue? Write a program to	implement the priority queue. (6)							
It should supports the following three operation	ons:							
i. PushElement(): Insert an item to the queue v	with associated priority.							
ii. PopElement(): Remove the element from the queue which has highest priority and return it								
iii. PeckAtNext(): Get the item with highest priority without removing it.								
Q#3. Write down the Fibonacci function. Also g	give the best case and worst case analysis of							
fibonacci function.	(6)							
Q#4. Write a C++ program to check balanced pa	rentheses using stack. (5)							
Remeber the following conditions:								
i. (): balanced brackets								
ii.) (: unbalanced brackets								
iii. {()()}: balanced brackets	= 2 j = +mp							
Q# 5.Define quick sort. Write a program that take	s last element as nivot, places the pivot element							
at its correct position in sorted array, and places	all smaller (smaller than pivot) to left of pivot							
and all greater elements to right of pivot.	(6)							
Q#6. Define the binary search tree. Write down	the functions to insert and search a node in							
binary search tree.	(7)							
-								
Q#7. Define graph. Also Differentiate between &	epth first search and depth first search with							
suitable example.	(5)							
To Wiston 1	Explain different method that used to calculate							
Q#8. Define hashing, hash Function and collision.	(5)							
hash functions. The E								
THE E	.nu							
2 - 2	Page 1 of 1							
40/m 14/6/20	19 Page 1 of 1							
44000 14/6/20								
	4							